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Abstract(
This final design review report provides a complete analysis of Technology 

Benefiting the Disabled’s Eye-Tracking Computer Human Interface Device for Disabled 

Individuals. Individuals with physical disabilities will be able to use their personal 

computers through their vision using our eye-tracker. Our group, Technology Benefiting 

Disabled (TBD), is focused on the disabilities that limit upper body function, such as 

severe motor neuron disease (or otherwise some debilitating injury causing long-term 

confinement to a wheelchair) and implemented a solution that allows eye–tracking to 

assist in human–to–computer interaction. To track the user’s eye movements resulting in 

cursor control on the screen by modifying the Starburst algorithm that is a traditional eye 

tracking method. This report showcases how we are able to develop an eye tracking 

solution for a few hundred dollars whereas the commercial solutions cost approximately 

$5000 to $30000 without compromising on the performance of the system. 

The report begins with a description of its purpose, problem, and scope. Next it 

provides theoretical background on the device’s operation. The main discussion deals 

with the design decisions made to maximize performance. The work done was on budget 

and on time. Initial prototypes proved eye tracking is a feasible option for on screen 

cursor control. Tests results have indicated this product is a viable option for commercial 

use. 
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Notation(List(

 

AR: Augmented Reality 

ArUco: AR Library based on OpenCV 

CDR: Critical Design Report 

CU: Cursor Updater 

dpi: Dots Per Inch 

FDR: Final Design Report 

HID: Human Interface Device 

IR: Infrared 

OpenCV: Open Source Computer Vision Library 

PDR: Preliminary Design Report 

RANSAC: Random sample consensus 

TBD: Technology Benefiting the Disabled 

USB: Universal Serial Bus  
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1 Introduction 

1.1 Purpose 

This report documents the final design by Technology Benefiting the Disabled 

(TBD) on the Eye-Tracking Computer Human Interface Device for Disabled Individuals to 

its graded Critical Design Review (CDR) report of April 24th 2013. A list of tasks 

completed, for the final demonstration on May 1st 2013, is included in this report. 

1.2 Background 

Traditional ways of using a computer cannot be used by everyone. In fact, one in 

nine disabled Canadians is affected by mobility[1]. This provided an opportunity to assist a 

large portion of the population by leveraging technology. At its current state, computers 

require fine motor skills whether it is for touch, type or click. Instead, our computing 

interface tracks the user’s eyes allowing hands-free control of the cursor.  

Using this solution allows persons with physical disabilities to use a computer with 

similar level of control as a user without said disabilities. Ideally, this solution is usable by 

anyone to interface with a computer. 

1.3 Scope 

This report provides the status of all tasks described in the graded CDR, which 

include the following: 

1. Implementing the limbus detection algorithm 

2. Implementing Scene to Screen Mapping 

3. Implementing auto-cursor positioning in Windows 

4. Improving the prototype to test the software 

5. Performing testing and optimizations 

6. Building an application to test the solution 
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2 Technical Description 
 

The eye tracker is a device that allows for cursor control using eye movements.  This 

is done by detecting the user’s eye shape and converting this to an estimate of cursor 

position using existing software algorithms modified by TBD.  First, the solution uses the 

Starburst [2] algorithm to fit an ellipse to the eye camera image, allowing for an estimation of 

limbus center where the corneal limbus, or limbus, is the border of the cornea. The ellipse 

fitting is done through RANSAC [3] iterations.  Once this is done, a secondary camera, 

pointed towards the screen, is used to map the estimated gaze point onto the user’s view 

while using the user’s position relative to the display.   

The product will require the outside intervention of a caregiver to place the device 

on the user and calibrate the user’s eye.  After the setup is completed, the user is able to use 

the computer as desired. TBD is using a common Windows application to demonstrate the 

use of the eye-tracker, as they are readily available on most personal computers.   The major 

components needed to operate the solution include user roles, hardware, and software. 

2.1 User Roles 

The main user roles needed to operate our eye-tracker are a caregiver and a user. A 

caregiver needs to be present to assist the user in setting up and calibrating the device. The 

caregiver must be present in order to fit the unique shape of the user’s limbus using our eye-

tracker. While using the initial prototypes, we found that adding these user roles were 

necessary in order to use this device properly. 

Initially, the caregiver positions the solution’s hardware and runs the calibration 

software for the user. Once this step is complete, the use is free to navigate on their personal 

computer using their vision instead of a mouse.  

2.2 Hardware 

2.2.1 Architecture 

In this eye-tracker, hardware architecture refers to the carefully designed structure of 

the device using a head mount and cameras’ placements to be used by the user. The purpose 
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of designing the hardware is to produce a prototype 

that can be used easily by any user. This design 

includes two cameras secured to the head mount. 

The camera directions vary as the eye-cam points 

towards the user’s eye and the scene-cam points 

towards the user’s view. The current head mount is 

shaped like a helmet to be worn on the user’s head, 

as seen in FIG I. 

The hardware architecture has evolved from 

the first prototype to reduce errors and increase the 

user experience. The first design was inaccurate 

and unstable and only used one camera. The second 

design is much more stable, visible in FIG I, 

making use of a secure and stable platform. The 

third iteration of this design shall be refined to reduce weight and increase comfort. 

The major components visible to the user and the caregiver are the head mount and 

cameras. 

 

2.2.2 Head Mount 
 

 The head mount refers to the platform placed in its operating position - to secure the 

cameras on the user’s head. The benefits of having a head mount include synchronization of 

the head movements with the eye-tracker system. A head mount’s purpose is simply to hold 

the camera positions in place while the solution is in use.  

TBD’s first head mount was made using a baseball hat, and we quickly realized this 

solution doesn’t provide the desired stability. The current head mount is an off-the-shelf 

generic snowboarding helmet and a complete profile of this helmet is available in 

APPENDIX A. This helmet is black, medium in size, with plastic casing on the outside and 

foam padding on the inside. It also has ventilation holes that we use to secure the cameras’ 

positions in place and these holes also regulate the temperature of our user’s head. 

 

 

 Head  

Mount 

 Scene  
Cam 

Eye  
Cam 

FIG I: Eye Tracker set-up 
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2.2.3 Cameras 
  

The cameras are used to record images of interest to the 

eye tracker in real time. These cameras record the user’s eye 

using the eye cam and the view using the scene-cam. The 

cameras haven’t changed because they are lightweight, small 

and can be modified to fit the head mount. The model number is 

Logitech HD Pro Webcam c920 and these cameras record in 

High Definition (HD) in the visible light spectrum. A complete 

specification is available in APPENDIX B.  

The camera’s external casing is a black plastic, with a glass front and it has a USB 

wire extending from the rear. Originally TBD intended to modify them by adding an IR pass 

filters inside but we are now working with them without any internal modifications.  

The reasons for changing the design were mostly due to construction, maintainability 

and safety. The infrared system requires circuitry to be soldered, which creates more points 

for the system to break. It also requires a separate power source: if a battery were used, this 

would have to be replaced periodically, otherwise modifications to the off shelf camera 

would have to be made to use power from it. By using a visible light solution, we can avoid 

having to open up the cameras to change the filters and avoid potential damage to the 

camera. This also means the hardware is more reliable, since there are fewer components 

that could fail (LED, circuitry, etc.). This also removes the possibility of the Infrared light 

potentially damaging someone’s eye if it were to get too close. We also don’t have to mount 

the LED to the camera, which can be bent causing issues. Another advantage to the visible 

light method is that we won’t get interference from other infrared sources.   

2.3 SOFTWARE 

2.3.1 Architecture 
 

 The software architecture is a modular design connecting the software components 

required to map eye movements on screen. The modular nature of this design allowed 

parallel development and modifications as necessary. The core structure of the software is 

 Scene  
Cam 

 
Eye 
Cam 

FIG II: Camera Positions 
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depicted in the FIG II and has changed to include the scene camera’s transformation from 

scene to screen coordinates. 

A simple protocol is used between all components, visible by the flow diagram in 

FIG III.  The primary service, the eye-tracking algorithm, is responsible for measuring the 

users gaze and projecting it onto the scene image in terms 

of x and y coordinates relative to the captured image.  

Next, the scene to screen transform (mapping) component 

takes these continuous x and y coordinates and calculates 

the gaze of the user relative to the screen he or she is 

looking at.  This is fed into API calls from the Win32 

library to set the cursor location, which completes the 

function of moving the cursor to where the user is looking. 

 

2.3.2 Limbus Detection Algorithm 
 

 There are a large variety of methods that can be used to detect the gaze of an 

eye.  Among these is the Starburst algorithm[2], which we have chosen for its simplicity, 

accuracy, and speed.  Starburst was originally designed to detect the pupil center of an eye 

using infrared lighting to illuminate a reflection in the cornea.  However, we are using a 

modified version, which detects the limbus under direct, visible light.   

First, the current limbus center is estimated, either by selecting the center pixel, or by 

using the previous limbus center if available.  Rays are sent out radially from this point in 

order to find a threshold - that is, a point where the intensity varies sharply. When an edge is 

found it is added as a feature point.  If the candidates are not valid, 

they will not match an ellipse. The edge detection process is then 

repeated starting from the average of the candidate points. This 

successively gets closer to the center of the limbus, and once the 

change in pupil center is less than 10 pixels. If no center is found 

within ten iterations then we assume this is a blink/bad frame. 

 

FIG III: Software Architecture 

FIG IV: Eye features 
recorded 
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Random sample consensus or RANSAC[3], an algorithm to perform fitting of models 

when data contains outliers, is then used to remove outliers from the candidates of the 

limbus contour. Inliers are chosen based on the distance to the ellipse compared to a 

threshold. The threshold is determined from a 

probabilistic model. The original Starburst algorithm 

uses a threshold of 1.98 pixels. 

The mapping of the eye position to the scene is 

determined by the homography between the positions of 

the limbus center and on the screen. The calibration data 

is obtained by the having the user looking nine known 

points on the screen and recording the eye positions. The 

calibration is used to create the mapping matrix, which is applied to the eye coordinates, 

which results in screen coordinates that the user is looking at. 

2.3.2.1 Performance Requirements 
 

The minimum requirement for use is to allow the user to press large on screen 

buttons with their eyes. This would allow them to use basic accessible programs to do a 

simple computer task, such as reading an electronic document. For example, Adobe 

Acrobat’s next page button is approximately 40 x 40 pixels. Thus, we would want our 

accuracy to be within 40 pixels to allow the user to select this button. 

We also want the user to sit comfortably away from the screen. During testing we 

found 20 inches to be a comfortable distance from a 72 dpi screen.  From this, we can 

calculate the minimum error in degrees needed to execute this task. 

 

!"#$%&
40!!"#$%&
72!!"#

20!!"#ℎ!" = 1.59!!"#$""% 

 

The Starburst algorithm ideally results in 1-degree error, so it will allow us to meet 

our requirement. In testing, we have achieved lower errors (this is described in the testing 

section).  

FIG V: Ellipse fitting on the eye 
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The update rate requirement is based on the restrictions of the camera. The camera’s 

max frame rate is 30 frames per second. Thus we want to be able to update the screen at 

approximately 30 updates a second. This is affected by the rate at which we can process 

images, which is calculated in section 4 of the report. The delay threshold requirement is 

calculated in section 4.2. An overview of these requirements, shown in Table I, drives these 

performance improvements of our system. 

 
Table I: Performance Requirements 

Variable Required 

Directional Accuracy 1.59 degrees 

Update Rate ~30 iterations/second 

Eye Cam Update 33 milliseconds 

Delay Threshold 133 milliseconds  
 

2.3.3 Click Input 

 

Clicking allows access to many actions on a computer, however since the mouse has 

been replaced with the eye tracker, there is no mouse button to press. The early iterations of 

the eye tracker used a large, easily accessible button, designed for users with at least some 

motor control in their hands, if not fine motor control.  

This was then replaced by the use of an extended blink from the user to input a 

mouse click. This means when the user closes their eye for a long period of time, beyond 

that of the average eye blink (0.1-0.4 seconds [3] this will register as a click event. To prevent 

accidental clicks from regular blinking, we choose the threshold to register a click as twice 

the average (0.8 seconds).   However, this method was deemed unsuitable as it did not feel 

natural and strained the eyes. 

We replaced the mechanism for clicking with a voice recognition application that is 

built into Windows. By using a microphone the user can initiate various mouse actions with 

words. For example, the user can say the words "click" or "right click" to replace the 

physical clicking mechanisms of the mouse. This method provides a more natural method of 



   TBD  |8 

clicking compared to the extended blink previously considered. Although not required, 

training the voice recognition system with test phrases allows for increased accuracy.  

2.3.4 Scene to Screen Mapping 
 

Using the modified Starburst algorithm explained above, we use the center of the 

user’s eye to determine where they are looking in the world (also known as the image 

acquired from the scene camera). The next stage in the pipe is to determine whether the 

user’s gaze point falls onto the connected computer monitor, and if so, move the cursor to 

the position where the user is looking. 

Scene to screen mapping refers to the process by which our software will determine 

the coordinate system of the screen with respect to the user. The problem being addressed is 

that of the initial calibration becoming invalid if the user moves because different 

viewpoints have different perspectives of the scene. Reconstruction of the screen coordinate 

system is required in order to ensure that the user’s gaze vector will continue to project onto 

the correct location on the screen even when the user is moving around. 

In earlier versions of this project, we drew colored boxes in the corners of the screen 

in order to identify the location of the monitor. However, this method is very distracting to 

an individual trying to use the PC. A better, less distracting solution was needed. 

Our goal was to use computer vision on the image 

acquired by the scene camera to construct a coordinate 

system for the monitor as computationally fast, efficient, 

and nonintrusive as possible. The method we decided on 

was to use computer vision glyphs (defined as a small 

modular two-dimensional pattern that is easily 

recognizable using computer vision techniques, shown 

right). 

Glyph[4] detection is a relatively trendy problem 

in computer science, and there are some open source 

libraries based on OpenCV[5] provide a framework for 

glyph detection. For our prototype we used the used the ArUco[6] library for glyph detection. 

FIG VI: Glyphs used 



   TBD  |9 

Behind the scenes, ArUco uses OpenCV’s rectangle detection to find possible 

candidates for glyphs (as a side note, a 3D rectangle may me transformed in any number of 

affine ways – OpenCV’s rectangle detection accounts for this). Second, a fine-grain analysis 

is used to identify an integer code each glyph represents (there are around 2000 

combinations of glyphs possible with this library). 

We put glyphs near the four corners of the monitor, and used our ArUco glyph 

detection do get the coordinates of each corner of each glyph. This gives us a trapezoidal 

shape on the scene image representing the rectangular surface of the monitor. The trapezoid 

in combination with the coordinates of the user’s gaze can be used to determine where to 

position the cursor. 

 

Given a trapezoid representing the 

monitor defined by four points on a 

Cartesian plane, and a point representing 

user’s gaze on the same Cartesian plane, 

we can construct a Cartesian plane on the 

trapezoid, and map the gaze point onto 

that plane. 
 

FIG VII: Scene Cartesian Coordinates 

First, the intersection of two opposite 

sides of the trapezoid is found and a line is 

drawn between the intersection and gaze 

point. The intersection can be found using 

the line intersect equation. If the opposite 

sides are parallel, the line chosen will also 

be parallel and intersect with the gaze 

point. 

 

 
FIG VIII: Scene Coordinate Intersection 
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The intersection between the newly 

calculated line and the other two sides of 

the trapezoid (adjacent to the sides 

previously intersected) must be found. 

 
FIG IX: Scene Trapezoid Coordinates 

The distance between the gaze point and either the top or bottom intersect points 

divided by the distance between the two intersection points can be multiplied by the screen 

height to get the distance from the top of the screen or the bottom of the screen, 

respectively. 

The same calculation can be done horizontally to get the distance from the left or right side 

of the screen. This can be modeled by the following process. 
 

!! = !!"#$%&$'#(! − !,! − !)!
!"#$! = !!"#$%&$'#(! − !,! − !)!

!"##"$%! = !!"#$%&$'#(! − !,! − !)!
!!

!! = !!"#$%&$'#(! − !,! − !)!
!"#$%! = !!"#$%&$'#(! − !,! − !)!
!"#ℎ!"! = !!"#$%&$!"(! − !,! − !)!

!
!"#$$%&$'(ℎ!! = !!"##"$!! !− !!"#!!!
!"#$$%&'()ℎ! = !!"#ℎ!!! !− !!"#$!!!

!
!"##$%!! != ! (!! !− !!"#!!)!/!!"#$$%&$'(ℎ!!
!"##$%!! != ! (!! !− !!"#!!)!/!!"#$$%&'()ℎ 

 

Where E is the intersect between the right and left edges of the monitor, and F is the 

intersect between the top and bottom edges of the monitor. 

2.3.4.1 Enhanced glyph-based screen mapping 
 

An obvious pitfall with the method used to map the cursor position using glyphs as 

described above is that it does not account for missing glyphs. The reality is that the scene 

FIG X: Scene calculation 
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camera often loses sight of glyphs. In this section we take a look at the robust, expandable 

algorithm used within our system to guess the position of lost glyphs. 

 

1. Each data structure representing a glyph contains the position of each other glyph 

measured when both glyphs were both spotted at the same time on the scene image. 

2. If a glyph is missing (we must guess it’s location),  

a. Loop through each visible glyph. 

b. The data structures for the missing glyph and each non-missing glyph know the 

last positions of each other, when both glyphs were seen at the same time.  

c. For each non-missing glyph, the ratio between each component (x/y) of each 

edge (top, bottom, left, right) and their former values is taken. 

d. The ratio calculated above can be shown to be equal to the ratio between the 

components of the distance between the missing and current non-missing glyph 

along with the old components of distance. 

e. The average of each measurement is taken to estimate the new location of the 

missing glyphs. 

 

2.4 INTEGRATION 

2.4.1 Computer Requirements 

 

The eye tracker requires two USB ports to be available on the computer in order for 

the eye and scene camera to be plugged in.  A flat screen monitor is also required.   

A computer with a minimum Pentium 4 processor, at least 1GB of RAM, and Windows XP 

or greater is heavily recommended.   

 

2.4.2 Use 

 

The system is designed under the assumption of a distance of roughly 50-75 cm 

between the user’s head and the computer screen, and maintaining this distance through use 

is highly recommended.  
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FIG XI: Eye tracker in use 

3 Design Decisions, Obstacles & Risks 
 
 The design decisions with regards to the major components of our tasks mentioned 

in section 1.3 is as follows: 

3.1 Implementing/Optimizing the Limbus Detection Algorithm 

Currently the team has a working real-time implementation of the visible light 

tracking via modified Starburst (although the error rate has a lot of room to go down). The 

code dealing with infrared light has been modified to ignore corneal reflections and detect 

the limbus. 

One disadvantage to switching is that it is harder to detect the eye without the 

corneal reflection. However, constraints added to RANSAC increase detection rates. 

Due to the difference in position of the scene camera from the eye, they see different 

images from parallax. So to minimize error we need to try to keep the scene camera close to 

the tracked eye.  Various other optimizations have been added to the eye-tracking 

component since the last update. 
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3.1.1 Obstacles and Optimization Efforts 

The Starburst algorithm faces several limitations when run in real-time due to the 

inability to perform instantaneous fine grain filtering of the features. This results in a large 

source of inaccuracy due to different face shapes and different dominant features on 

people’s faces. For example, a common source of error is the presence of dominating 

eyebrows causing incorrect feature detection.  This inevitably leads to the ellipse being 

incorrectly fitted by the RANSAC algorithms, as outliers are not recognized as outliers due 

to their number. To prevent this behavior, various restrictions have been imposed on the 

RANSAC algorithm results. 

These restrictions are based on working tests and have been determined through experiment. 

1) Restrict the ranges of the limbus center: Behind a steady mounted camera, the range of x 

and y coordinates the pupil center can occupy is restricted. That is, it is reasonable to 

assume, for example, that the limbus center will never occupy the far corners of the 

screen, or the far top or bottom portions of the screen. Such restrictions, when imposed 

on the RANSAC algorithm, prevents features such as the eyebrows, which usually 

occupy the extremities of the screen, from infringing too much on making the proper 

estimation of the ellipse. 

Restrictions on 640x480 camera: 400 < x < 120, and 380 < y < 120 

2) Ratios of the ellipse: The angle from camera to eye is relatively low, so the primary 

source of distortion in the ellipse ratio (that is, the ratio of a and b parameters of the 

ellipse) is when the eye looks to the left and right of the screen. We can assume that 

certain parameters for the ellipse would never occurred in regular usage. The shape of 

the limbus will never be extremely wide, for example. 

Furthermore, we can restrict the accepted ratios depending on the estimated position of 

the limbus center. As an example, if the limbus center is located close to the left portion 

of the screen, the ratio of the ellipse parameters cannot favor a circular ellipse. 
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3) Restrict the size of the ellipse: The early calibration of the camera center ensures that the 

center of the eye will be in the expected spot. We also ensure that the size falls under an 

expected value. By formally restricting the size, we also protect against the ellipse 

being fitted to exterior features such as the eyebrows (which usually results in a larger 

ellipse being formed). 

   Restrictions on 640x480 camera: 92 < a < 65 and 92 < b < 65 

3.2 Implementing Scene to Screen Mapping 

The current screen mapping technique uses custom C++ code to scan the scene 

camera image for green or red clusters. In a separate thread, four borderless Windows form 

are drawn on the screen, one in each corner, and the colors are alternated between red, and 

green. 

3.2.1 Implementing Auto-Cursor Positioning in Windows 

 The Win32 library provided by Microsoft makes it trivial to update cursor position 

via C++ code, thus this step is essentially complete and is awaiting final implementation 

from the eye tracker and mapping systems to be fully implemented. 

3.3 Building a Prototype to Test the Software 

An initial prototype was constructed using a baseball hat along with spare cameras.  

We soon found limitations in both the physical design as well as the cameras.  The baseball 

hat, for example, was not nearly stable enough for the weight of the cameras, and our tests 

were affected by this loss of stability.  To solve this we bought new Logitech C920 cameras 

and constructed a new head device.  The new device is described at length above in the 

hardware section.  In our construction, we have also encountered several obstacles with the 

current design. 

a) Weight: The head mount, combined with two cameras, adds a great deal of weight on the 

head. This does introduce discomfort and, equally as important, a greater potential to 

cause movement and maladjustment during the use of the camera. The helmet design 

is not comfortable to wear for extended periods of time. The imbalance and front-

heavy design is also prone to slippage, which is of course a problem for calibration 
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mapping. 

b) Adjustment: The current design, in order to maintain non-intrusiveness, has the camera 

placed farther from the eye (about ten centimeters). This introduces a difficulty when 

adjusting the cameras, as the camera uses digital zoom, and a small adjustment in the 

camera results in a major shift from the perspective of the eye camera. 

c) Visual blocking: The camera facing the eye is mounted from an arc and comes down in 

front of the eye. This blocks the view of the screen partially. The ideal solution is to 

place the camera at an angle facing downwards, such that the entire eye can be seen 

without blocking the screen from view. 

4 PERFORMANCE, OPTIMIZATION & TESTING 
 

4.1 Performance 

The system’s accuracy and user experience is closely related to the execution speed 

of the system. 

The performance of the system has an impact on the user experience. Since the 

camera’s frame-rate is 30 frames per second, we’re restricted by this in terms of processing 

the frames.  

1!!"#$%&
30!!"#$%& ∗

1!!"#$%&
1000!!"##"$%&'()$ = 33.3!!" 

Thus the total time to process the frames must be less than 33.3 milliseconds.  

 

One of the issues with the RANSAC approach is that it varies in performance based 

on the iterations executed. The number of iterations varies with the number of inliers found. 

So when an ellipse that approximates most points of the limbus it finishes quickly, within 

approximately 1 millisecond. However, when the eye is not found or many features not on 

the eye are found, the time to execute RANSAC becomes very high.  
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FIG XII: Time to execute vaious RANSAC iterations 

If we take the worst case execution time per iteration and the required time to 

execute RANSAC we can find that the max acceptable RANSAC iterations. 

 

!"#!!"#$%"&'()!!"!!"#$"% = !"#$%&'$()*(+',,
!"#$%$&'($&)("*+ = 33.3!!"

0.0372!!"
!"#$%"&'(

= 8951!!"#$%"&'() 

 

One issue with this limitation is that when there are more features detected the 

probability of finding an accurate representation of the limbus is lowered. So to ensure 

better accuracy we try a massively parallel approach. 

Since each RANSAC iteration doesn’t depend on the previous iteration of RANSAC 

we can use a Graphical Processing Unit(GPU) to execute many iterations of RANSAC at 

once.  To do this we take the loop and execute it once per thread using a GPU and try 

different threads per block to issue. 
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FIG XIII: Execution Time for RANSAC vs. Threads per Block (per 1 Block) 

 

From this we find that the most efficient number of threads is 1024, which is the 

max number of threads we can issue on the architecture of GPU we have available. 

We next try to optimize the number of blocks. These are collections of threads which are 

executed by a single processing unit on the GPU. 

 

 
FIG XIV: Execution Time for RANSAC vs Blocks Issued 

We predict that the optimal number of blocks to be issued is 7, since our GPU has 7 

processing units on it. 
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FIG XV: Execution Time per 7 Blocks 

 

Testing shows this to be correct, as below 7 blocks results in no drop in 

performance, while beyond 7 blocks results in increase processing time for every 7 blocks 

issued.  The execution time remains below our max allowable time at 21 blocks. Beyond 

this many blocks results in memory issues, so our optimal issue is 21 blocks of 1024 threads 

each. This allows us to execute 21504 iterations in 15 milliseconds.  

The GPU’s performance allows us to increase iterations which gives us an increased 

probability of detection while ensuring performance requirements.  

4.2 Accuracy Testing 

Accuracy tests consisted of gazing at multiple stationary points across the screen and 

measuring the average dispersion in the calculated point from the true location of the marker 

being looked at.  The results are displayed below:  

The average dispersion was calculated as 0.769, which is an improvement on the 

original Starburst algorithm as well as previous iterations of TBD’s software.   
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Various eye and face types were tested, including varying eye colors as well as faces with 

make-up applied.  The accuracy of ellipse fitting generally decreased in both cases.  In the 

former, this was due to the fact that the 

same threshold parameters cannot be 

applied to the smaller differences in 

contrast between sclera and iris in those 

with lighter eyes.  In the latter, this was 

because the addition of makeup introduced 

strong features that would be added as 

candidates for the limbus.   

A possible solution to the former is to 

detect for the pupil instead of the limbus, 

or to view the eye-camera in colour rather 

than grayscale and pick pupil candidates 

by colour difference rather than intensity.  Solving the latter is more difficult as it interferes 

one of the core principles behind the algorithm – assuming points of high contrast have a 

high likelihood of being the pupil center. 

Lighting also caused significant issues.  When tests were performed in areas like Vari Hall, 

odd lighting conditions led to situations such as shadows being cast over eyelids, which then 

introduced points of contrast which were taken as candidates for limbus fitting.   Another 

issue was the dominance of reflections in certain areas.  Too many reflections cause large 

white areas within the limbus, which cause mistaken features to be detected within the eye, 

reducing the probability of correct fitting.  

The ranges of glyphs ranged from 1 to 3.5 inches.  From user testing, we concluded 

the ideal size for the glyphs was approximately 2 inches.  Larger sizes were not ideal as they 

consumed more screen space resulting in less degree of freedom in the users head motion 

(as the large glyphs would often disappear off the range of the camera).  On the other hand, 

smaller glyph sizes were often not detected by the software. 

  Another modification, which came about due to testing, was the modification in the 

Kalman filter measurement.  This was a result of analyzing latency and our goal to keep the 

FIG XVI: Directional Accuracies Sampled 
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delay in the cursor at a maximum of 4 frames in image processing terms.  Larger delays 

resulted in an unnatural feeling when using the device and lack of responsiveness. 

5 DEMONSTRATION & APPLICATION 
 

To test out the TBD Eyetracker we used a game created by a third party. This game 

is similar to the well-known game Asteroids, but is played with a mouse. It involves 

asteroids falling from the top of the screen, while the user shoots the asteroids by pointing 

the mouse at the point of interest.  This tests the several aspects of the eye-tracker including 

accuracy and latency. Our tests showed that the users were able to play the game well 

enough to accomplish all the game tasks using only their eye movements. 

6 Future work 

6.1 Guided Adjustment 

A large source of current error comes from the adjustment of the camera relative to 

the eyes, which is inconsistent and varies every time it is put on.  Our plan to implement a 

guided adjustment system.  That is, when the program is run, the user will be prompted to 

adjust the camera until the picture received matches a predefined ideal state, such as the 

limbus size being ideal.  This eliminates some of the randomness associated with such 

adjustment. 

6.2 Head Mount 

 The future of our head mounts is 

constrained by cost. The head mount’s 

physical design can be modified by 

increasing its visual appeal. This can be 

accomplished by embedding the cameras 

in a frame similar to eyeglasses resulting 

in a device that can be worn by the user and have minimal intervention from the caregiver.  

FIG XVII: Future Hardware Prototype [7] 
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7 BUDGET 
 
 TBD was allotted one thousand dollars for this project. There were initial 

estimations of using half this amount. The current estimation is at cent percent, as our 

previous budget included a cost one camera. The current design asks for two cameras and 

we have purchased four cameras to build two functioning prototypes. We are operating on 

budget. An additional head mount was purchased to test the next generation of our prototype 

but it was not used due to difficulties in implementation. An important distinction needs to 

be addressed here between the product cost and development cost. The cost for one of our 

devices is approximately $250, which includes two cameras and a head mount and Table I is 

the most complete and accurate representation of the development cost. 

 
Table II: Budget 

Item Quantity Cost (Approx.) % of Total 

Website 1 $15.00 1.5% 

Camera 4 $84 33.6% 

Head Mount 2 $100.00 20% 

Software Licensing 1 $0 0% 

Promotional/Presentation Material 1 $200.00 20% 

Mounting Materials 1  $49.00 4.9% 

Misc. 1 $200.00 20% 

Total Expenses $1000.00 100% 

Total Revenue $1000.00 100% 

Remaining $0 0% 
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8 IMPACT 
 
 Our eye-tracker will impact lives of individuals with disabilities by allowing them to 

use personal computers using their vision. This device is safe as its physical components are 

similar to headphones - with a head mount and a wire connected to the computer. The ideal 

conditions include indoor environments that produce minimal reflections in the user’s eye. 

This environment does not require any special accommodations, and the users can use our 

device in an area they are comfortable in.  

 The eye-tracker is sustainable as its major components can be easily replaced and 

upgraded. The current prototype is approximately two hundred and fifty dollars, and 

majority of this cost is for the cameras. As cameras become cheaper, this head mounts can 

also be reduced in price, making this an economical solution. 

We strongly believe this product can increase the quality of life for individuals that 

are unable to use computers due to physical limitations. 

9 CONCLUSION 
 

TBD is pleased with the results produced. We have developed two prototypes to test 

our eye-tracking solutions and proved eye detection and tracking can be used in real life 

application. 

To summarize the final design report, we have demonstrated a successful project and 

product. The obstacles and risks have been addressed and we understand there is always 

room for improvements. However, we are pleased by our work as it performs at par with the 

products available in the market at over 25 times our cost! 

This analysis of our work has indicated a healthy work group and we have delivered 

a product that will not only be a functional device, but also make computing more 

accessible. 



!

This drawing is a second draft of the physical eye-tracker prototype. It was 
built using off-the-shelf components that are made of a combination of 
metals and plastics. Head mount viewed from the side and top. The 
cameras are in blue, helmet is black and green dashed lines indicate the 
approximate distance between features. The two cameras, colored blue, in 
this drawing are Logitech c920 mounted to the helmet (see APPENDIX B.) 
The helmet, colored black, used is a GIRO g9 Snow Sports Helmet Adult. 
The camera wires are not visible in this drawing Features mentioned 
include ABS Injection shell for durability, EPS Foam liner offers the best 
impact absorption, Fully CPSC certified and 11 Vents.!
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Appendix B: CAMERA SPECIFICATION 
 
Logitech HD Pro Webcam C920 

 

Camera specification from the manufacturer: [8]  

System Requirements 

• Windows Vista®, Windows® 7 (32-bit or 64-bit) or 
Windows® 8 

• For HD 1080p video recording: 
o 2.4 GHz Intel® Core 2 Duo processor 
o 2 GB RAM or more 
o Hard drive space for recorded videos 
o USB 2.0 port (USB 3.0 ready) 

 

• Recommended requirements for full HD 1080p 
and 720p video calling*: 

o 1 Mbps upload/download for 720p 
o 2 Mbps upload/download for 1080p 

(Requirements for H.264 and MJPEG formats 
vary) 
Visit your preferred video calling provider’s 
website for exact information on system and 
performance requirements. 

• For Skype® in Full HD 1080p 
Skype 5.8 for Windows* 

Warranty Information 

• 2-year limited hardware warranty 
 

Package Contents 

• Webcam with 6-foot cable 
• User documentation 

 
Part Number 

• PN 960-000764 
 

Technical Specifications 

• Full HD 1080p video calling (up to 1920 x 1080 pixels) 
with the latest version of Skype for Windows* 

• 720p HD video calling (up to 1280 x 720 pixels) with 
supported clients 

• Full HD video recording (up to 1920 x 1080 pixels) 
with a recommended system** 

• Logitech Fluid Crystal™ Technology 
• H.264 video compression* 
• Carl Zeiss® lens with 20-step autofocus 
• Built-in dual stereo mics with automatic noise 

reduction 
• Automatic low-light correction 
• Hi-Speed USB 2.0 certified (USB 3.0 ready) 
• Tripod-ready universal clip fits laptops, LCD or CRT 

monitors 
Logitech webcam 
software:*** 

• Video recording: Up to Full HD 1080p video capture** 
• Photo capture: Up to 15 megapixels (software 

enhanced) 
• 1-click Facebook®, Twitter™ and YouTube™ HD 

upload (registration required) 
*Please download the latest version of Skype, Skype 5.7 
Beta for Windows, which offers 1080p HD video calling. 
** H.264 recording requires installation of QuickTime®.  
*** Requires installation of included softwar
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