
Lassonde School of Engineering, York University

ENG 4000

!

Final Design Report

!

 Eye-Tracking Computer Human Interface Device for Disabled Individuals

Project Members

Josh Sideris

Ragavan Thurairatnam

Prasanthan Urithirakodeeswaran

Shailja Sahani

Faculty Advisor: John Tsotsos

Course Director: Michael Jenkin

Date: April 29 2013

info@tbdgroup.ca | © Copyright by TBD 2013

Abstract(
This final design review report provides a complete analysis of Technology

Benefiting the Disabled’s Eye-Tracking Computer Human Interface Device for Disabled

Individuals. Individuals with physical disabilities will be able to use their personal

computers through their vision using our eye-tracker. Our group, Technology Benefiting

Disabled (TBD), is focused on the disabilities that limit upper body function, such as

severe motor neuron disease (or otherwise some debilitating injury causing long-term

confinement to a wheelchair) and implemented a solution that allows eye–tracking to

assist in human–to–computer interaction. To track the user’s eye movements resulting in

cursor control on the screen by modifying the Starburst algorithm that is a traditional eye

tracking method. This report showcases how we are able to develop an eye tracking

solution for a few hundred dollars whereas the commercial solutions cost approximately

$5000 to $30000 without compromising on the performance of the system.

The report begins with a description of its purpose, problem, and scope. Next it

provides theoretical background on the device’s operation. The main discussion deals

with the design decisions made to maximize performance. The work done was on budget

and on time. Initial prototypes proved eye tracking is a feasible option for on screen

cursor control. Tests results have indicated this product is a viable option for commercial

use.

Acknowledgments(

!

!

!

!

!

We would like to acknowledge contributions of Professor John Tsotsos, who

generously offered us the use of his laboratory facilities. Also, we would like to thank

Stnaley Lio for his excellent photography skills, Ann Bublitz and Christian Haas for

giving us a space to work in, Patrick Irvin for letting us use his tools, Shah Sotodeh for

testing our solution, Guy Benari for demonstrating the solution, and the developers of the

Starburst algorithm. Moreover, we would like to acknowledge the Physical, Sensory &

Medical Disability Services for partnering with us to test our technology and providing us

with a wheelchair for demonstration. Finally, we are most thankful to Michael Jenkin for

his continued insight and patience.

!

!

!

!

Notation(List(

AR: Augmented Reality

ArUco: AR Library based on OpenCV

CDR: Critical Design Report

CU: Cursor Updater

dpi: Dots Per Inch

FDR: Final Design Report

HID: Human Interface Device

IR: Infrared

OpenCV: Open Source Computer Vision Library

PDR: Preliminary Design Report

RANSAC: Random sample consensus

TBD: Technology Benefiting the Disabled

USB: Universal Serial Bus

!

Table of Contents

1 INTRODUCTION 1

1.1 PURPOSE 1
1.2 BACKGROUND 1
1.3 SCOPE 1

2 TECHNICAL DESCRIPTION 2

2.1 USER ROLES 2
2.2 HARDWARE 2
2.2.1 ARCHITECTURE 2
2.2.2 HEAD MOUNT 3
2.2.3 CAMERAS 4
2.3 SOFTWARE 4
2.3.1 ARCHITECTURE 4
2.3.2 LIMBUS DETECTION ALGORITHM 5
2.3.3 CLICK INPUT 7
2.3.4 SCENE TO SCREEN MAPPING 8
2.4 INTEGRATION 11
2.4.1 COMPUTER REQUIREMENTS 11
2.4.2 USE 11

3 DESIGN DECISIONS, OBSTACLES & RISKS 12

3.1 IMPLEMENTING/OPTIMIZING THE LIMBUS DETECTION ALGORITHM 12
3.1.1 OBSTACLES AND OPTIMIZATION EFFORTS 13
3.2 IMPLEMENTING SCENE TO SCREEN MAPPING 14
3.2.1 IMPLEMENTING AUTO-CURSOR POSITIONING IN WINDOWS 14
3.3 BUILDING A PROTOTYPE TO TEST THE SOFTWARE 14

4 PERFORMANCE, OPTIMIZATION & TESTING 15

4.1 PERFORMANCE 15
4.2 ACCURACY TESTING 18

5 DEMONSTRATION & APPLICATION 20

6 FUTURE WORK 20

6.1 GUIDED ADJUSTMENT 20
6.2 HEAD MOUNT 20

7 BUDGET 21

8 IMPACT 22

9 CONCLUSION 22

APPENDIX A: HARDWARE SPECIFICATION I

APPENDIX B: CAMERA SPECIFICATION II

REFERENCES III

CONTRIBUTION SHEET IV

Table of Figures

FIG I: Eye Tracker Set-up __ 3
FIG II: Camera Set-up ___ 4
FIG III: Software Architecture __ 5
FIG IV: Eye Features Recorded ___ 5
FIG V: Ellipse Fitting on the Eye __ 6
FIG VI: Glyphs Used ___ 8
FIG VII: Scene Cartesian Coordinates __ 9
FIG VIII: Scene Coordinate Intersection __ 9
FIG IX: Scene Trapezoid Coordinates ___ 10
FIG X: Scene Calculation ___ 10
FIG XI: Eye tracker in use __ 12
FIG XII: Time to execute vaious RANSAC iterations ___ 16
FIG XIII: Execution Time for RANSAC vs. Threads per Block (per 1 Block) ________________________ 17
FIG XIV: Execution Time for RANSAC vs Blocks Issued _______________________________________ 17
FIG XV: Execution Time per 7 Blocks ___ 18
FIG XVI: Directional Accuracies Sampled __ 18
FIG XVII: Future Hardware Prototype ___ 20

Table of Tables

Table I: Performance Requirements __ 7
Table I: Budget ___ 21
Table III: Contributions ___ IV

 TBD |1

1 Introduction

1.1 Purpose

This report documents the final design by Technology Benefiting the Disabled

(TBD) on the Eye-Tracking Computer Human Interface Device for Disabled Individuals to

its graded Critical Design Review (CDR) report of April 24th 2013. A list of tasks

completed, for the final demonstration on May 1st 2013, is included in this report.

1.2 Background

Traditional ways of using a computer cannot be used by everyone. In fact, one in

nine disabled Canadians is affected by mobility[1]. This provided an opportunity to assist a

large portion of the population by leveraging technology. At its current state, computers

require fine motor skills whether it is for touch, type or click. Instead, our computing

interface tracks the user’s eyes allowing hands-free control of the cursor.

Using this solution allows persons with physical disabilities to use a computer with

similar level of control as a user without said disabilities. Ideally, this solution is usable by

anyone to interface with a computer.

1.3 Scope

This report provides the status of all tasks described in the graded CDR, which

include the following:

1. Implementing the limbus detection algorithm

2. Implementing Scene to Screen Mapping

3. Implementing auto-cursor positioning in Windows

4. Improving the prototype to test the software

5. Performing testing and optimizations

6. Building an application to test the solution

 TBD |2

2 Technical Description

The eye tracker is a device that allows for cursor control using eye movements. This

is done by detecting the user’s eye shape and converting this to an estimate of cursor

position using existing software algorithms modified by TBD. First, the solution uses the

Starburst [2] algorithm to fit an ellipse to the eye camera image, allowing for an estimation of

limbus center where the corneal limbus, or limbus, is the border of the cornea. The ellipse

fitting is done through RANSAC [3] iterations. Once this is done, a secondary camera,

pointed towards the screen, is used to map the estimated gaze point onto the user’s view

while using the user’s position relative to the display.

The product will require the outside intervention of a caregiver to place the device

on the user and calibrate the user’s eye. After the setup is completed, the user is able to use

the computer as desired. TBD is using a common Windows application to demonstrate the

use of the eye-tracker, as they are readily available on most personal computers. The major

components needed to operate the solution include user roles, hardware, and software.

2.1 User Roles

The main user roles needed to operate our eye-tracker are a caregiver and a user. A

caregiver needs to be present to assist the user in setting up and calibrating the device. The

caregiver must be present in order to fit the unique shape of the user’s limbus using our eye-

tracker. While using the initial prototypes, we found that adding these user roles were

necessary in order to use this device properly.

Initially, the caregiver positions the solution’s hardware and runs the calibration

software for the user. Once this step is complete, the use is free to navigate on their personal

computer using their vision instead of a mouse.

2.2 Hardware

2.2.1 Architecture

In this eye-tracker, hardware architecture refers to the carefully designed structure of

the device using a head mount and cameras’ placements to be used by the user. The purpose

 TBD |3

of designing the hardware is to produce a prototype

that can be used easily by any user. This design

includes two cameras secured to the head mount.

The camera directions vary as the eye-cam points

towards the user’s eye and the scene-cam points

towards the user’s view. The current head mount is

shaped like a helmet to be worn on the user’s head,

as seen in FIG I.

The hardware architecture has evolved from

the first prototype to reduce errors and increase the

user experience. The first design was inaccurate

and unstable and only used one camera. The second

design is much more stable, visible in FIG I,

making use of a secure and stable platform. The

third iteration of this design shall be refined to reduce weight and increase comfort.

The major components visible to the user and the caregiver are the head mount and

cameras.

2.2.2 Head Mount

 The head mount refers to the platform placed in its operating position - to secure the

cameras on the user’s head. The benefits of having a head mount include synchronization of

the head movements with the eye-tracker system. A head mount’s purpose is simply to hold

the camera positions in place while the solution is in use.

TBD’s first head mount was made using a baseball hat, and we quickly realized this

solution doesn’t provide the desired stability. The current head mount is an off-the-shelf

generic snowboarding helmet and a complete profile of this helmet is available in

APPENDIX A. This helmet is black, medium in size, with plastic casing on the outside and

foam padding on the inside. It also has ventilation holes that we use to secure the cameras’

positions in place and these holes also regulate the temperature of our user’s head.

 Head

Mount

 Scene
Cam

Eye
Cam

FIG I: Eye Tracker set-up

 TBD |4

2.2.3 Cameras

The cameras are used to record images of interest to the

eye tracker in real time. These cameras record the user’s eye

using the eye cam and the view using the scene-cam. The

cameras haven’t changed because they are lightweight, small

and can be modified to fit the head mount. The model number is

Logitech HD Pro Webcam c920 and these cameras record in

High Definition (HD) in the visible light spectrum. A complete

specification is available in APPENDIX B.

The camera’s external casing is a black plastic, with a glass front and it has a USB

wire extending from the rear. Originally TBD intended to modify them by adding an IR pass

filters inside but we are now working with them without any internal modifications.

The reasons for changing the design were mostly due to construction, maintainability

and safety. The infrared system requires circuitry to be soldered, which creates more points

for the system to break. It also requires a separate power source: if a battery were used, this

would have to be replaced periodically, otherwise modifications to the off shelf camera

would have to be made to use power from it. By using a visible light solution, we can avoid

having to open up the cameras to change the filters and avoid potential damage to the

camera. This also means the hardware is more reliable, since there are fewer components

that could fail (LED, circuitry, etc.). This also removes the possibility of the Infrared light

potentially damaging someone’s eye if it were to get too close. We also don’t have to mount

the LED to the camera, which can be bent causing issues. Another advantage to the visible

light method is that we won’t get interference from other infrared sources.

2.3 SOFTWARE

2.3.1 Architecture

 The software architecture is a modular design connecting the software components

required to map eye movements on screen. The modular nature of this design allowed

parallel development and modifications as necessary. The core structure of the software is

 Scene
Cam

Eye
Cam

FIG II: Camera Positions

 TBD |5

depicted in the FIG II and has changed to include the scene camera’s transformation from

scene to screen coordinates.

A simple protocol is used between all components, visible by the flow diagram in

FIG III. The primary service, the eye-tracking algorithm, is responsible for measuring the

users gaze and projecting it onto the scene image in terms

of x and y coordinates relative to the captured image.

Next, the scene to screen transform (mapping) component

takes these continuous x and y coordinates and calculates

the gaze of the user relative to the screen he or she is

looking at. This is fed into API calls from the Win32

library to set the cursor location, which completes the

function of moving the cursor to where the user is looking.

2.3.2 Limbus Detection Algorithm

 There are a large variety of methods that can be used to detect the gaze of an

eye. Among these is the Starburst algorithm[2], which we have chosen for its simplicity,

accuracy, and speed. Starburst was originally designed to detect the pupil center of an eye

using infrared lighting to illuminate a reflection in the cornea. However, we are using a

modified version, which detects the limbus under direct, visible light.

First, the current limbus center is estimated, either by selecting the center pixel, or by

using the previous limbus center if available. Rays are sent out radially from this point in

order to find a threshold - that is, a point where the intensity varies sharply. When an edge is

found it is added as a feature point. If the candidates are not valid,

they will not match an ellipse. The edge detection process is then

repeated starting from the average of the candidate points. This

successively gets closer to the center of the limbus, and once the

change in pupil center is less than 10 pixels. If no center is found

within ten iterations then we assume this is a blink/bad frame.

FIG III: Software Architecture

FIG IV: Eye features
recorded

 TBD |6

Random sample consensus or RANSAC[3], an algorithm to perform fitting of models

when data contains outliers, is then used to remove outliers from the candidates of the

limbus contour. Inliers are chosen based on the distance to the ellipse compared to a

threshold. The threshold is determined from a

probabilistic model. The original Starburst algorithm

uses a threshold of 1.98 pixels.

The mapping of the eye position to the scene is

determined by the homography between the positions of

the limbus center and on the screen. The calibration data

is obtained by the having the user looking nine known

points on the screen and recording the eye positions. The

calibration is used to create the mapping matrix, which is applied to the eye coordinates,

which results in screen coordinates that the user is looking at.

2.3.2.1 Performance Requirements

The minimum requirement for use is to allow the user to press large on screen

buttons with their eyes. This would allow them to use basic accessible programs to do a

simple computer task, such as reading an electronic document. For example, Adobe

Acrobat’s next page button is approximately 40 x 40 pixels. Thus, we would want our

accuracy to be within 40 pixels to allow the user to select this button.

We also want the user to sit comfortably away from the screen. During testing we

found 20 inches to be a comfortable distance from a 72 dpi screen. From this, we can

calculate the minimum error in degrees needed to execute this task.

!"#$%&
40!!"#$%&
72!!"#

20!!"#ℎ!" = 1.59!!"#$""%

The Starburst algorithm ideally results in 1-degree error, so it will allow us to meet

our requirement. In testing, we have achieved lower errors (this is described in the testing

section).

FIG V: Ellipse fitting on the eye

 TBD |7

The update rate requirement is based on the restrictions of the camera. The camera’s

max frame rate is 30 frames per second. Thus we want to be able to update the screen at

approximately 30 updates a second. This is affected by the rate at which we can process

images, which is calculated in section 4 of the report. The delay threshold requirement is

calculated in section 4.2. An overview of these requirements, shown in Table I, drives these

performance improvements of our system.

Table I: Performance Requirements

Variable Required

Directional Accuracy 1.59 degrees

Update Rate ~30 iterations/second

Eye Cam Update 33 milliseconds

Delay Threshold 133 milliseconds

2.3.3 Click Input

Clicking allows access to many actions on a computer, however since the mouse has

been replaced with the eye tracker, there is no mouse button to press. The early iterations of

the eye tracker used a large, easily accessible button, designed for users with at least some

motor control in their hands, if not fine motor control.

This was then replaced by the use of an extended blink from the user to input a

mouse click. This means when the user closes their eye for a long period of time, beyond

that of the average eye blink (0.1-0.4 seconds [3] this will register as a click event. To prevent

accidental clicks from regular blinking, we choose the threshold to register a click as twice

the average (0.8 seconds). However, this method was deemed unsuitable as it did not feel

natural and strained the eyes.

We replaced the mechanism for clicking with a voice recognition application that is

built into Windows. By using a microphone the user can initiate various mouse actions with

words. For example, the user can say the words "click" or "right click" to replace the

physical clicking mechanisms of the mouse. This method provides a more natural method of

 TBD |8

clicking compared to the extended blink previously considered. Although not required,

training the voice recognition system with test phrases allows for increased accuracy.

2.3.4 Scene to Screen Mapping

Using the modified Starburst algorithm explained above, we use the center of the

user’s eye to determine where they are looking in the world (also known as the image

acquired from the scene camera). The next stage in the pipe is to determine whether the

user’s gaze point falls onto the connected computer monitor, and if so, move the cursor to

the position where the user is looking.

Scene to screen mapping refers to the process by which our software will determine

the coordinate system of the screen with respect to the user. The problem being addressed is

that of the initial calibration becoming invalid if the user moves because different

viewpoints have different perspectives of the scene. Reconstruction of the screen coordinate

system is required in order to ensure that the user’s gaze vector will continue to project onto

the correct location on the screen even when the user is moving around.

In earlier versions of this project, we drew colored boxes in the corners of the screen

in order to identify the location of the monitor. However, this method is very distracting to

an individual trying to use the PC. A better, less distracting solution was needed.

Our goal was to use computer vision on the image

acquired by the scene camera to construct a coordinate

system for the monitor as computationally fast, efficient,

and nonintrusive as possible. The method we decided on

was to use computer vision glyphs (defined as a small

modular two-dimensional pattern that is easily

recognizable using computer vision techniques, shown

right).

Glyph[4] detection is a relatively trendy problem

in computer science, and there are some open source

libraries based on OpenCV[5] provide a framework for

glyph detection. For our prototype we used the used the ArUco[6] library for glyph detection.

FIG VI: Glyphs used

 TBD |9

Behind the scenes, ArUco uses OpenCV’s rectangle detection to find possible

candidates for glyphs (as a side note, a 3D rectangle may me transformed in any number of

affine ways – OpenCV’s rectangle detection accounts for this). Second, a fine-grain analysis

is used to identify an integer code each glyph represents (there are around 2000

combinations of glyphs possible with this library).

We put glyphs near the four corners of the monitor, and used our ArUco glyph

detection do get the coordinates of each corner of each glyph. This gives us a trapezoidal

shape on the scene image representing the rectangular surface of the monitor. The trapezoid

in combination with the coordinates of the user’s gaze can be used to determine where to

position the cursor.

Given a trapezoid representing the

monitor defined by four points on a

Cartesian plane, and a point representing

user’s gaze on the same Cartesian plane,

we can construct a Cartesian plane on the

trapezoid, and map the gaze point onto

that plane.

FIG VII: Scene Cartesian Coordinates

First, the intersection of two opposite

sides of the trapezoid is found and a line is

drawn between the intersection and gaze

point. The intersection can be found using

the line intersect equation. If the opposite

sides are parallel, the line chosen will also

be parallel and intersect with the gaze

point.

FIG VIII: Scene Coordinate Intersection

 TBD |10

The intersection between the newly

calculated line and the other two sides of

the trapezoid (adjacent to the sides

previously intersected) must be found.

FIG IX: Scene Trapezoid Coordinates

The distance between the gaze point and either the top or bottom intersect points

divided by the distance between the two intersection points can be multiplied by the screen

height to get the distance from the top of the screen or the bottom of the screen,

respectively.

The same calculation can be done horizontally to get the distance from the left or right side

of the screen. This can be modeled by the following process.

!! = !!"#$%&$'#(! − !,! − !)!
!"#$! = !!"#$%&$'#(! − !,! − !)!

!"##"$%! = !!"#$%&$'#(! − !,! − !)!
!!

!! = !!"#$%&$'#(! − !,! − !)!
!"#$%! = !!"#$%&$'#(! − !,! − !)!
!"#ℎ!"! = !!"#$%&$!"(! − !,! − !)!

!
!"#$$%&$'(ℎ!! = !!"##"$!! !− !!"#!!!
!"#$$%&'()ℎ! = !!"#ℎ!!! !− !!"#$!!!

!
!"##$%!! != ! (!! !− !!"#!!)!/!!"#$$%&$'(ℎ!!
!"##$%!! != ! (!! !− !!"#!!)!/!!"#$$%&'()ℎ

Where E is the intersect between the right and left edges of the monitor, and F is the

intersect between the top and bottom edges of the monitor.

2.3.4.1 Enhanced glyph-based screen mapping

An obvious pitfall with the method used to map the cursor position using glyphs as

described above is that it does not account for missing glyphs. The reality is that the scene

FIG X: Scene calculation

 TBD |11

camera often loses sight of glyphs. In this section we take a look at the robust, expandable

algorithm used within our system to guess the position of lost glyphs.

1. Each data structure representing a glyph contains the position of each other glyph

measured when both glyphs were both spotted at the same time on the scene image.

2. If a glyph is missing (we must guess it’s location),

a. Loop through each visible glyph.

b. The data structures for the missing glyph and each non-missing glyph know the

last positions of each other, when both glyphs were seen at the same time.

c. For each non-missing glyph, the ratio between each component (x/y) of each

edge (top, bottom, left, right) and their former values is taken.

d. The ratio calculated above can be shown to be equal to the ratio between the

components of the distance between the missing and current non-missing glyph

along with the old components of distance.

e. The average of each measurement is taken to estimate the new location of the

missing glyphs.

2.4 INTEGRATION

2.4.1 Computer Requirements

The eye tracker requires two USB ports to be available on the computer in order for

the eye and scene camera to be plugged in. A flat screen monitor is also required.

A computer with a minimum Pentium 4 processor, at least 1GB of RAM, and Windows XP

or greater is heavily recommended.

2.4.2 Use

The system is designed under the assumption of a distance of roughly 50-75 cm

between the user’s head and the computer screen, and maintaining this distance through use

is highly recommended.

 TBD |12

FIG XI: Eye tracker in use

3 Design Decisions, Obstacles & Risks

 The design decisions with regards to the major components of our tasks mentioned

in section 1.3 is as follows:

3.1 Implementing/Optimizing the Limbus Detection Algorithm

Currently the team has a working real-time implementation of the visible light

tracking via modified Starburst (although the error rate has a lot of room to go down). The

code dealing with infrared light has been modified to ignore corneal reflections and detect

the limbus.

One disadvantage to switching is that it is harder to detect the eye without the

corneal reflection. However, constraints added to RANSAC increase detection rates.

Due to the difference in position of the scene camera from the eye, they see different

images from parallax. So to minimize error we need to try to keep the scene camera close to

the tracked eye. Various other optimizations have been added to the eye-tracking

component since the last update.

 TBD |13

3.1.1 Obstacles and Optimization Efforts

The Starburst algorithm faces several limitations when run in real-time due to the

inability to perform instantaneous fine grain filtering of the features. This results in a large

source of inaccuracy due to different face shapes and different dominant features on

people’s faces. For example, a common source of error is the presence of dominating

eyebrows causing incorrect feature detection. This inevitably leads to the ellipse being

incorrectly fitted by the RANSAC algorithms, as outliers are not recognized as outliers due

to their number. To prevent this behavior, various restrictions have been imposed on the

RANSAC algorithm results.

These restrictions are based on working tests and have been determined through experiment.

1) Restrict the ranges of the limbus center: Behind a steady mounted camera, the range of x

and y coordinates the pupil center can occupy is restricted. That is, it is reasonable to

assume, for example, that the limbus center will never occupy the far corners of the

screen, or the far top or bottom portions of the screen. Such restrictions, when imposed

on the RANSAC algorithm, prevents features such as the eyebrows, which usually

occupy the extremities of the screen, from infringing too much on making the proper

estimation of the ellipse.

Restrictions on 640x480 camera: 400 < x < 120, and 380 < y < 120

2) Ratios of the ellipse: The angle from camera to eye is relatively low, so the primary

source of distortion in the ellipse ratio (that is, the ratio of a and b parameters of the

ellipse) is when the eye looks to the left and right of the screen. We can assume that

certain parameters for the ellipse would never occurred in regular usage. The shape of

the limbus will never be extremely wide, for example.

Furthermore, we can restrict the accepted ratios depending on the estimated position of

the limbus center. As an example, if the limbus center is located close to the left portion

of the screen, the ratio of the ellipse parameters cannot favor a circular ellipse.

 TBD |14

3) Restrict the size of the ellipse: The early calibration of the camera center ensures that the

center of the eye will be in the expected spot. We also ensure that the size falls under an

expected value. By formally restricting the size, we also protect against the ellipse

being fitted to exterior features such as the eyebrows (which usually results in a larger

ellipse being formed).

 Restrictions on 640x480 camera: 92 < a < 65 and 92 < b < 65

3.2 Implementing Scene to Screen Mapping

The current screen mapping technique uses custom C++ code to scan the scene

camera image for green or red clusters. In a separate thread, four borderless Windows form

are drawn on the screen, one in each corner, and the colors are alternated between red, and

green.

3.2.1 Implementing Auto-Cursor Positioning in Windows

 The Win32 library provided by Microsoft makes it trivial to update cursor position

via C++ code, thus this step is essentially complete and is awaiting final implementation

from the eye tracker and mapping systems to be fully implemented.

3.3 Building a Prototype to Test the Software

An initial prototype was constructed using a baseball hat along with spare cameras.

We soon found limitations in both the physical design as well as the cameras. The baseball

hat, for example, was not nearly stable enough for the weight of the cameras, and our tests

were affected by this loss of stability. To solve this we bought new Logitech C920 cameras

and constructed a new head device. The new device is described at length above in the

hardware section. In our construction, we have also encountered several obstacles with the

current design.

a) Weight: The head mount, combined with two cameras, adds a great deal of weight on the

head. This does introduce discomfort and, equally as important, a greater potential to

cause movement and maladjustment during the use of the camera. The helmet design

is not comfortable to wear for extended periods of time. The imbalance and front-

heavy design is also prone to slippage, which is of course a problem for calibration

 TBD |15

mapping.

b) Adjustment: The current design, in order to maintain non-intrusiveness, has the camera

placed farther from the eye (about ten centimeters). This introduces a difficulty when

adjusting the cameras, as the camera uses digital zoom, and a small adjustment in the

camera results in a major shift from the perspective of the eye camera.

c) Visual blocking: The camera facing the eye is mounted from an arc and comes down in

front of the eye. This blocks the view of the screen partially. The ideal solution is to

place the camera at an angle facing downwards, such that the entire eye can be seen

without blocking the screen from view.

4 PERFORMANCE, OPTIMIZATION & TESTING

4.1 Performance

The system’s accuracy and user experience is closely related to the execution speed

of the system.

The performance of the system has an impact on the user experience. Since the

camera’s frame-rate is 30 frames per second, we’re restricted by this in terms of processing

the frames.

1!!"#$%&
30!!"#$%& ∗

1!!"#$%&
1000!!"##"$%&'()$ = 33.3!!"

Thus the total time to process the frames must be less than 33.3 milliseconds.

One of the issues with the RANSAC approach is that it varies in performance based

on the iterations executed. The number of iterations varies with the number of inliers found.

So when an ellipse that approximates most points of the limbus it finishes quickly, within

approximately 1 millisecond. However, when the eye is not found or many features not on

the eye are found, the time to execute RANSAC becomes very high.

 TBD |16

FIG XII: Time to execute vaious RANSAC iterations

If we take the worst case execution time per iteration and the required time to

execute RANSAC we can find that the max acceptable RANSAC iterations.

!"#!!"#$%"&'()!!"!!"#$"% = !"#$%&'$()*(+',,
!"#$%$&'($&)("*+ = 33.3!!"

0.0372!!"
!"#$%"&'(

= 8951!!"#$%"&'()

One issue with this limitation is that when there are more features detected the

probability of finding an accurate representation of the limbus is lowered. So to ensure

better accuracy we try a massively parallel approach.

Since each RANSAC iteration doesn’t depend on the previous iteration of RANSAC

we can use a Graphical Processing Unit(GPU) to execute many iterations of RANSAC at

once. To do this we take the loop and execute it once per thread using a GPU and try

different threads per block to issue.

0

20

40

60

80

100

120

140

160

21504 10752 5376 2688

Process time for RANSAC

Time (ms) for execution vs Number of iterations

 TBD |17

FIG XIII: Execution Time for RANSAC vs. Threads per Block (per 1 Block)

From this we find that the most efficient number of threads is 1024, which is the

max number of threads we can issue on the architecture of GPU we have available.

We next try to optimize the number of blocks. These are collections of threads which are

executed by a single processing unit on the GPU.

FIG XIV: Execution Time for RANSAC vs Blocks Issued

We predict that the optimal number of blocks to be issued is 7, since our GPU has 7

processing units on it.

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200

T
im

e
(m

s)

GPU threads issued

Time to execute vs Issued GPU
threads

0

5

10

15

20

0 5 10 15 20

T
im

e
(m

s)

Blocks issued

Time to execute vs Blocks
issued

 TBD |18

FIG XV: Execution Time per 7 Blocks

Testing shows this to be correct, as below 7 blocks results in no drop in

performance, while beyond 7 blocks results in increase processing time for every 7 blocks

issued. The execution time remains below our max allowable time at 21 blocks. Beyond

this many blocks results in memory issues, so our optimal issue is 21 blocks of 1024 threads

each. This allows us to execute 21504 iterations in 15 milliseconds.

The GPU’s performance allows us to increase iterations which gives us an increased

probability of detection while ensuring performance requirements.

4.2 Accuracy Testing

Accuracy tests consisted of gazing at multiple stationary points across the screen and

measuring the average dispersion in the calculated point from the true location of the marker

being looked at. The results are displayed below:

The average dispersion was calculated as 0.769, which is an improvement on the

original Starburst algorithm as well as previous iterations of TBD’s software.

0

5

10

15

20

0 5 10 15 20 25

T
im

e
(m

s)

Blocks issued

Time to execute vs Blocks
issued

 TBD |19

Various eye and face types were tested, including varying eye colors as well as faces with

make-up applied. The accuracy of ellipse fitting generally decreased in both cases. In the

former, this was due to the fact that the

same threshold parameters cannot be

applied to the smaller differences in

contrast between sclera and iris in those

with lighter eyes. In the latter, this was

because the addition of makeup introduced

strong features that would be added as

candidates for the limbus.

A possible solution to the former is to

detect for the pupil instead of the limbus,

or to view the eye-camera in colour rather

than grayscale and pick pupil candidates

by colour difference rather than intensity. Solving the latter is more difficult as it interferes

one of the core principles behind the algorithm – assuming points of high contrast have a

high likelihood of being the pupil center.

Lighting also caused significant issues. When tests were performed in areas like Vari Hall,

odd lighting conditions led to situations such as shadows being cast over eyelids, which then

introduced points of contrast which were taken as candidates for limbus fitting. Another

issue was the dominance of reflections in certain areas. Too many reflections cause large

white areas within the limbus, which cause mistaken features to be detected within the eye,

reducing the probability of correct fitting.

The ranges of glyphs ranged from 1 to 3.5 inches. From user testing, we concluded

the ideal size for the glyphs was approximately 2 inches. Larger sizes were not ideal as they

consumed more screen space resulting in less degree of freedom in the users head motion

(as the large glyphs would often disappear off the range of the camera). On the other hand,

smaller glyph sizes were often not detected by the software.

 Another modification, which came about due to testing, was the modification in the

Kalman filter measurement. This was a result of analyzing latency and our goal to keep the

FIG XVI: Directional Accuracies Sampled

 TBD |20

delay in the cursor at a maximum of 4 frames in image processing terms. Larger delays

resulted in an unnatural feeling when using the device and lack of responsiveness.

5 DEMONSTRATION & APPLICATION

To test out the TBD Eyetracker we used a game created by a third party. This game

is similar to the well-known game Asteroids, but is played with a mouse. It involves

asteroids falling from the top of the screen, while the user shoots the asteroids by pointing

the mouse at the point of interest. This tests the several aspects of the eye-tracker including

accuracy and latency. Our tests showed that the users were able to play the game well

enough to accomplish all the game tasks using only their eye movements.

6 Future work

6.1 Guided Adjustment

A large source of current error comes from the adjustment of the camera relative to

the eyes, which is inconsistent and varies every time it is put on. Our plan to implement a

guided adjustment system. That is, when the program is run, the user will be prompted to

adjust the camera until the picture received matches a predefined ideal state, such as the

limbus size being ideal. This eliminates some of the randomness associated with such

adjustment.

6.2 Head Mount

 The future of our head mounts is

constrained by cost. The head mount’s

physical design can be modified by

increasing its visual appeal. This can be

accomplished by embedding the cameras

in a frame similar to eyeglasses resulting

in a device that can be worn by the user and have minimal intervention from the caregiver.

FIG XVII: Future Hardware Prototype [7]

 TBD |21

7 BUDGET

 TBD was allotted one thousand dollars for this project. There were initial

estimations of using half this amount. The current estimation is at cent percent, as our

previous budget included a cost one camera. The current design asks for two cameras and

we have purchased four cameras to build two functioning prototypes. We are operating on

budget. An additional head mount was purchased to test the next generation of our prototype

but it was not used due to difficulties in implementation. An important distinction needs to

be addressed here between the product cost and development cost. The cost for one of our

devices is approximately $250, which includes two cameras and a head mount and Table I is

the most complete and accurate representation of the development cost.

Table II: Budget

Item Quantity Cost (Approx.) % of Total

Website 1 $15.00 1.5%

Camera 4 $84 33.6%

Head Mount 2 $100.00 20%

Software Licensing 1 $0 0%

Promotional/Presentation Material 1 $200.00 20%

Mounting Materials 1 $49.00 4.9%

Misc. 1 $200.00 20%

Total Expenses $1000.00 100%

Total Revenue $1000.00 100%

Remaining $0 0%

 TBD |22

8 IMPACT

 Our eye-tracker will impact lives of individuals with disabilities by allowing them to

use personal computers using their vision. This device is safe as its physical components are

similar to headphones - with a head mount and a wire connected to the computer. The ideal

conditions include indoor environments that produce minimal reflections in the user’s eye.

This environment does not require any special accommodations, and the users can use our

device in an area they are comfortable in.

 The eye-tracker is sustainable as its major components can be easily replaced and

upgraded. The current prototype is approximately two hundred and fifty dollars, and

majority of this cost is for the cameras. As cameras become cheaper, this head mounts can

also be reduced in price, making this an economical solution.

We strongly believe this product can increase the quality of life for individuals that

are unable to use computers due to physical limitations.

9 CONCLUSION

TBD is pleased with the results produced. We have developed two prototypes to test

our eye-tracking solutions and proved eye detection and tracking can be used in real life

application.

To summarize the final design report, we have demonstrated a successful project and

product. The obstacles and risks have been addressed and we understand there is always

room for improvements. However, we are pleased by our work as it performs at par with the

products available in the market at over 25 times our cost!

This analysis of our work has indicated a healthy work group and we have delivered

a product that will not only be a functional device, but also make computing more

accessible.

!

This drawing is a second draft of the physical eye-tracker prototype. It was
built using off-the-shelf components that are made of a combination of
metals and plastics. Head mount viewed from the side and top. The
cameras are in blue, helmet is black and green dashed lines indicate the
approximate distance between features. The two cameras, colored blue, in
this drawing are Logitech c920 mounted to the helmet (see APPENDIX B.)
The helmet, colored black, used is a GIRO g9 Snow Sports Helmet Adult.
The camera wires are not visible in this drawing Features mentioned
include ABS Injection shell for durability, EPS Foam liner offers the best
impact absorption, Fully CPSC certified and 11 Vents.!

! SHEET 1 OF 1

TBD GROUP 2013
GRAPHICAL COMMUNICATION FINAL DESIGN REVIEW DATE: APRIL 25 2013
3ND PROTOTYPE

SECTIONAL SIDE VIEW

TOP VIEW

PROJECTION ANGLE

APPENDIX(A:(HELMET(CAMERA(SPECIFICATION(

TBD | II

Appendix B: CAMERA SPECIFICATION

Logitech HD Pro Webcam C920

Camera specification from the manufacturer: [8]

System Requirements

• Windows Vista®, Windows® 7 (32-bit or 64-bit) or
Windows® 8

• For HD 1080p video recording:
o 2.4 GHz Intel® Core 2 Duo processor
o 2 GB RAM or more
o Hard drive space for recorded videos
o USB 2.0 port (USB 3.0 ready)

• Recommended requirements for full HD 1080p
and 720p video calling*:

o 1 Mbps upload/download for 720p
o 2 Mbps upload/download for 1080p

(Requirements for H.264 and MJPEG formats
vary)
Visit your preferred video calling provider’s
website for exact information on system and
performance requirements.

• For Skype® in Full HD 1080p
Skype 5.8 for Windows*

Warranty Information

• 2-year limited hardware warranty

Package Contents

• Webcam with 6-foot cable
• User documentation

Part Number

• PN 960-000764

Technical Specifications

• Full HD 1080p video calling (up to 1920 x 1080 pixels)
with the latest version of Skype for Windows*

• 720p HD video calling (up to 1280 x 720 pixels) with
supported clients

• Full HD video recording (up to 1920 x 1080 pixels)
with a recommended system**

• Logitech Fluid Crystal™ Technology
• H.264 video compression*
• Carl Zeiss® lens with 20-step autofocus
• Built-in dual stereo mics with automatic noise

reduction
• Automatic low-light correction
• Hi-Speed USB 2.0 certified (USB 3.0 ready)
• Tripod-ready universal clip fits laptops, LCD or CRT

monitors
Logitech webcam
software:***

• Video recording: Up to Full HD 1080p video capture**
• Photo capture: Up to 15 megapixels (software

enhanced)
• 1-click Facebook®, Twitter™ and YouTube™ HD

upload (registration required)
*Please download the latest version of Skype, Skype 5.7
Beta for Windows, which offers 1080p HD video calling.
** H.264 recording requires installation of QuickTime®.
*** Requires installation of included softwar

TBD | III

REFERENCES

[1] "Disability Statistics Canada." Disabled World News and Disability Information. N.p., n.d.

Web. 27 Mar. 2013. <http://www.disabled-world.com/disability/statistics/disability-
statistics-canada.php>.

[2] Li, Dongheng , and Derrick Parkhurst. "Starburst: A hybrid algorithm for video-based eye

tracking combining feature-based and model-based approaches." IEEE Xplore
10.1109/CVPR.2005.531 (2005): n. pag. IEEE Xplore. Web. 27 Mar. 2013.

[3] Robert, Fisher. "The RANSAC (Random Sample Consensus) Algorithm."Informatics

Homepages Server. N.p., n.d. Web. 5 May 2013.
<http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FISHER/RANSAC/>.

[4] "AForge.NET :: Glyphs' recognition." AForge.NET :: Computer Vision, Artificial

Intelligence, Robotics. N.p., n.d. Web. 29 Mar. 2013.
<http://www.aforgenet.com/articles/glyph_recognition/>.

[5] "OpenCV | OpenCV." OpenCV | OpenCV. N.p., n.d. Web. 5 May 2013.

<http://opencv.org/>.

[6] " ArUco: a minimal library for Augmented Reality applications based on OpenCv |
Aplicaciones de la Visión Artificial." Universidad de Córdoba. N.p., n.d. Web. 5 May
2013. <http://www.uco.es/investiga/grupos/ava/node/26>.

[7] "Tobii Glasses | Tobii Eye Tracker IS | from Acuity ETS." Usability & User Experience |

Tobii Eye Tracking from Acuity ETS. N.p., n.d. Web. 29 Mar. 2013. <http://www.acuity-
ets.com/products_glasses.htm>.

[8] "Logitech® HD Pro Webcam C920." Logitech - Get Immersed in the Digital World!. N.p.,

n.d. Web. 29 Mar. 2013. <http://www.logitech.com/en-us/product/hd-pro-webcam-
c920?crid=34>.

References not cited but used:

Szeliski, Richard Springer. "Computer Visison." Computer Vision Algorithms and
Applications. York University. Toronto, ON. FALL 2012. Class lectures.

Drewes, Heiko. Eye gaze tracking for human computer interaction. Munich:
Disseration, Ludwig Maximilians University, 2010. Print.

Richard Hartley, Andrew Zisserman, Multiple View Geometry in Computer Vision
Cambridge, UK; New York : Cambridge University Press, 2000

TBD | IV

CONTRIBUTION SHEET

TEAM MEMBERS & ROLES
Josh Sideris
jsideris@tbdgroup.ca
Chief Research Officer

Ragavan Thurairatnam
ragavan@tbdgroup.ca
Chief Technical Officer

Prasanthan Urithirakodeeswaran
pkodees@tdbgroup.ca
Chief Development Officer

Shailja Sahani
shelly@tbdgroup.ca
Chief Business Office

MEMBER WORK BREAKDOWN

Table III: Contributions

Title Josh S. Ragavan T. Prasa U. Shailja S. Total
Project Management 50% 0% 0% 50% 100%
Technical Reports 10% 15% 25% 50% 100%
Vision Development 30% 70% 0% 0% 100%
UI Development 60% 0% 40% 0% 100%
Interface Development 60% 0% 40% 0% 100%
Weekly Team Meetings 25% 25% 25% 25% 100%
Market Research 10% 10% 20% 60% 100%
Software Architecture 0% 0% 100% 0% 100%
Hardware Selection 0% 50% 0% 50% 100%
Finance 0% 0% 0% 100% 100%
Testing 25% 25% 25% 25% 100%
Demonstration 20% 20% 20% 40% 100%
Success Measurement 25% 25% 25% 25% 100%

April&29&2013& April&29&2013&
April&29&2013& April&29&2013&

&

